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Inductances

Stator
(partie fixe)

R L

iU

I

U

Schéma équivalent d'un moteur 
synchrone à aimants permanents

Source :
robots-et-compagnie.com
rs-online.com

Résistance (du fil de la bobine) 

Inductance (de la bobine)

Effet de la rotation du rotor
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Inductances
R L

iu

i

uSchéma équivalent d'une 
machine à courant continu

sR sjXσ rjXσ′ rR s′

ferR hjXSchéma équivalent d'une 
machine asynchrone

[ ]X L= ω Ω
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équations de Maxwell sous forme intégrale ?

• Potentiel magnétique (tension)
• Flux d’induction magnétique (courant)
• Perméance (résistance-1)

=rot H J

t
∂

= −
∂
Brot Ε

div 0=B

= µB H

= ρE J

j
jC S

i⋅ = ⋅ =∑∫ ∫H dl J dS


C S t
∂

⋅ = − ⋅
∂∫ ∫
BE dl dS



S

0⋅ =∫ B dS


(loi d’Ampère)

(loi de Lenz-Faraday)

forme intégrale (Stockes)

Equations de Maxwell

modèle de Kirchhoff

(quasi-statique)

S'il y a un courant il y a un champ magnétique

S'il y a une variation du flux il y a une tension induite

Pas de monopôle magnétique mais des paires de pôles
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NiΘ =

i

N

(loi d’Ampère)Potentiel magnétique scalaire

[ ]j
j C

i AΘ = = ⋅∑ ∫ H dl


H

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Champ d’induction magnétique

Champ magnétique                   
(indépendant du milieu)

Perméabilité du matériau

Perméabilité relative

Champ d'induction magnétique

= µB H

7
0 4 10−µ = π

0 rµ = µ µ

B


B


B


B


i

matériaux ferromagnétiques (fer)

matériaux amagnétiques μ=μ0 
(air, inox, plastique,…)

B [T]

H [A/m]

Perméabilité du videcoude de saturation

µ
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NiΘ =

i

N

(loi d’Ampère)Potentiel magnétique scalaire

[ ]j
j C

i AΘ = = ⋅∑ ∫ H dl


H


= µB H
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i

N

Φ

Flux d'induction magnétique

[ ] [ ]
S

Wb ou VsΦ = ⋅∫B dS

B


12

NΨ = Φ
flux totalisé
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m1 RΛ =

Φ = Λ Θ

Mise en parallèle de perméances

1 2Φ = Φ +Φ eq parallèle k
k

Λ = Λ∑

Mise en série de perméances

1 2Θ = Θ +Θ eq série

k k

1
1Λ =

Λ∑

Réluctance et perméance magnétique
B

AB
0 rA

dl
S

Θ = Φ
µ µ∫

B

m
0 rA

dlR
S

=
µ µ∫

AB mRΘ = Φ

Réluctance magnétique Perméance magnétique

1 2= Λ Θ+Λ Θ ( )1 2= Λ +Λ Θ

1 2

1 1
= Φ + Φ
Λ Λ 1 2

1 1 
= + Φ Λ Λ 

S
l

Λ = µ

En appliquant l'équation du potentiel magnétique à un tube de flux partiel.
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• Potentiel magnétique (tension)
• Flux d’induction magnétique (courant)
• Perméance (résistance-1)

Résumé et exemple

Modèle de Kirchhoff

0 rµ = µ µ

Φ = Λ Θ
S
l

Λ = µ

NiΘ =

N1 N2

Φ

1u

1i

2u

2i

1Ψ
2Ψ 1Θ 2Θ

Φ Λ



Exemple :
Modélisation d'un moteur pas à pas réluctant

cΛ
jΘ

fΛ

δΛ

rΛ

σΛσΛ
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Exercice
Que vaut le flux d'induction magnétique circulant dans 
la bobine avec et sans entrefer ?

7
0 4 10−µ = π

0 rµ = µ µ

a c

b

I δ

a=0.01m

b=0.1m

c=0.05m

I=1A

N=100

μfer=1000 μ0

= 1mmδ

Φ = Λ Θ

eq série

k k

1
1Λ =

Λ∑

S
l

Λ = µ

NiΘ =

eqΦ = Λ Θ

1 4

δ

5

2

3

NiΘ = [ ]100 A=
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Exercice
Que vaut le flux d'induction magnétique circulant dans 
la bobine avec et sans entrefer ?

7
0 4 10−µ = π

0 rµ = µ µ

a c

b

I δ

a=0.01m

b=0.1m

c=0.05m

I=1A

N=100

μfer=1000 μ0

= 1mmδ

Φ = Λ Θ

eq série

k k

1
1Λ =

Λ∑

S
l

Λ = µ

NiΘ =

eqΦ = Λ Θ
keq k

1 1
=

Λ Λ∑

1 4

δ

5

2

3

3 51 2 4

fer fer fer fer 0 fer

l ll l l
S S S S S S

δ
= + + + + +
µ µ µ µ µ µ

NiΘ = [ ]100 A=

( )1 2 3 4 5

fer 0

l l l l l
S S

+ + + + δ
= +

µ µ 18



Exercice
Que vaut le flux d'induction magnétique circulant dans 
la bobine avec et sans entrefer ?

7
0 4 10−µ = π

0 rµ = µ µ

a=0.01m

b=0.1m

c=0.05m

I=1A

N=100

μfer=1000 μ0

= 1mmδ

Φ = Λ Θ

eq série

k k

1
1Λ =

Λ∑

S
l

Λ = µ

NiΘ =

rfer

0 rferS
µδ

µ µ
rfer

fer S
µ δ

=
µ

( )1 2 3 4 rfer 5

fer

l l l l l
S

+ + + +µ δ +
=

µ

[ ]4S a c 5 10 m−= ⋅ = ⋅

eqΦ = Λ Θ
keq k

1 1
=

Λ Λ∑
3 51 2 4

fer fer fer fer 0 fer

l ll l l
S S S S S S

δ
= + + + + +
µ µ µ µ µ µ

NiΘ = [ ]100 A=

( )1 2 3 4 5

fer 0

l l l l l
S S

+ + + + δ
= +

µ µ

3
fer

Vs1.26 10
Am

−  µ = ⋅   

[ ]7
eq 1mm 4.625 10 H−
δ=Λ = ⋅

[ ]
[ ]

6
0mm

6
1mm

175 10 Wb

46.25 10 Wb

−
δ=

−
δ=

Φ = ⋅

Φ = ⋅

[ ]7
eq 0mm 17.5 10 H−
δ=Λ = ⋅
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Exercice
Comparaison des valeurs du flux avec et sans entrefer.

ca

b

I δ

[ ]
[ ]

6
0mm

6
1mm

175 10 Wb

46.25 10 Wb

−
δ=

−
δ=

Φ = ⋅

Φ = ⋅
~4x moins ! En ajoutant 1mm d’air.

Pour μr=1000 quand on ajoute 1mm
d’air c’est comme si l’on ajoute
1mètre de fer dans le circuit
magnétique (longueur équivalente).

eq pour 0mml 36cmδ= =

eq pour 1mml 1.359mδ= =

~4x plus

( )1 2 3 4 rfer 5

eq série fer

l l l l l1
S

+ + + +µ δ +
=

Λ µ

fer 01000µ = µ
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1
11

1

L
i
Ψ

=

L iΨ =

Inductances

inductance propre

22

2
21

1

L
i
Ψ

= 1 2 21N N= Λinductance mutelle

1 1 1NΨ = Φ 2
1 11 1N i= Λ

1 11 1Φ = Λ Θ

1 1 1N iΘ =




s
Φ = ⋅∫ B dS

flux totaliséΨ =
1N

21Φ

2N

1Φ
1i

perméanceΛ =
N nombredespires=

1Ψ 2Ψ

2
1 1 1L N inductancedefuiteσ σ= Λ =

2
h1 1 h1L N inductance de champ principal= Λ =

21 12Λ = Λ

21 12L L=

h1 1L Lσ= +

flux de
fuite

flux de champ
principal1σΦ h1Φ

flux mutel

2 2 21NΨ = Φ 1 2 21 1N N i= Λ
21 21 1Φ = Λ Θ



Facteur de couplage

12 1 2 hL N N= Λ

2
11 1 hL N= Λ

2
22 2 hL N= Λ

Pour un système sans flux de fuite

12 11 22L L L= 12 11 22L L L≤

12

11 22

Lk 1
L L

= ≤

2
2 12

11 22

L1 k 1 1
L L

σ = − = − ≤

Facteur de couplage

Facteur de dispersion

en généralisant
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Champ d’induction magnétique

Champ magnétique                   
(indépendant du milieu)

Perméabilité du matériau

Perméabilité relative

Champ d'induction magnétique

= µB H

7
0 4 10−µ = π

0 rµ = µ µ

B


B


B


B


i

matériaux ferromagnétiques (fer)

matériaux amagnétiques μ=μ0 
(air, inox, plastique,…)

B [T]

H [A/m]

Perméabilité du videcoude de saturation

µ
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Propriétés des matériaux ferromagnétiques

H

B

2 non-linéarités :

• Hystérésis

• Saturation

Caractéristique B-H

0 r S
l

µ µ
Φ = Θ

C

NiΘ = ⋅ =∫ H dl


S

Φ = ⋅∫B dS
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X

X

X

X

X

X

X

•

•

•

•

•

•

•

X

X

X

X

X

X

X

•

•

•

•

•

•

•

B

H

Pertes par hystérèsis

induction rémanente

( )2
H

ˆP f , B

champ coercitif
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Introduction des pertes fer

fer hystérèsis courantsdeFoucaultP P P= +

Tôle Isolant
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Influence de la saturation sur l'inductance

S'il y a saturation l'inductance diminue !

Inductance = facilité du flux à passer.
Le flux passe moins facilement, l'inductance diminue.

Quand on sature on Henry moins (C. Koechli).

µ

B

H
B H= µ

2 2 SL N N
l

= Λ = µ

L Λ µ 
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équations de Maxwell sous forme intégrale ?

• Potentiel magnétique (tension)
• Flux d’induction magnétique (courant)
• Perméance (résistance-1)

=rot H J

t
∂

= −
∂
Brot Ε

div 0=B

= µB H

= ρE J

j
jC S

i⋅ = ⋅ =∑∫ ∫H dl J dS


C S t
∂

⋅ = − ⋅
∂∫ ∫
BE dl dS



S

0⋅ =∫ B dS


(loi d’Ampère)

(loi de Lenz-Faraday)

forme intégrale (Stockes)

Equations de Maxwell

modèle de Kirchhoff

(quasi-statique)

S'il y a un courant il y a un champ magnétique

S'il y a une variation du flux il y a une tension induite

Pas de monopôle magnétique mais des paires de pôles
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N

( )d N
u R i

dt
Φ

= +

NΨ = Φ

du R i
dt
Ψ

= +

flux totalisé

loi d'Ohm 
généralisée

dΦ

(loi de Lenz-Faraday)Loi de la tension induite

( )d N
u R i

dt
Φ

− + = −

C S t
∂

⋅ = − ⋅
∂∫ ∫
BE dl dS



33



du R i
dt
Ψ

= +

1 1 1u R i=

1Ψ

Tension induite généralisée

34

1i

1u

1
11

diL
dt

+

2Ψ

2i

2u

2
12

diL
dt

+

( ) 1 2
1 1 1 h1 1 12

di diu R i L L L
dt dtσ= + + +



S

N

du R i
dt
Ψ

= +

1 1 1u R i=
dk
dtΦ

α
+

1Ψ
(t)Ω

S

N

Tension induite généralisée

Ω

35

1u

1
11

diL
dt

+

2Ψ

Ω



  S

N

Tension induite de
transformation

Tension induite
de mouvement

N

S

N

S

Tension induite généralisée

Ω

36

Ψ
i

u
du R i
dt
Ψ

= +

u R i= kΦ+ Ω
diL
dt

+ L dii
i dt

∂
+

∂



Tension induite
de saturation
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Analogie entre circuits électriques et magnétiques

38

Résumé

eq série

k k

1
1Λ =

Λ∑

NiΘ =Potentiel magnétique (tension)

NΨ = ΦFlux totalisé

Φ = Λ Θ

Hl=

Flux d'induction magnétique (courant) BSΦ =

Perméance (résistance-1) S
l

Λ = µ

longueur

Loi d'Ohm

Mise en parallèle de perméances eq parallèle k
k

Λ = Λ∑

Mise en série de perméances

Perméabilité
0 rµ = µ µ 7

0 4 10−µ = π



N LiΨ = Φ =Flux totalisé

d diu R i R i L k
dt dt Φ

Ψ
= + = + + ΩLoi d'Ohm généralisée

12 1 2 12L N N= Λ

Inductance propre 2
11 1 11L N= Λ

Inductance de champ principal 2
h1 1 hL N= Λ

Inductance mutuelle

Inductance de fuite 2
1 1 1L Nσ σ= Λ

39

Résumé
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