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Inductances
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Equations de Maxwell (quasi-statique)

forme intégrale (Stockes)

rotH=J

B
nnE——Q—

ot

divB=0

S'il y a un courant il y a un champ magnétique

<_[>H-d1 — jJ-ds =", (loi d’Ampere)

S'il'y a une var/at/on du flux il y a une tension induite

CJ‘}E -dl = —j— dS (loi de Lenz-Faraday)

Pas de monopo/e magnétique mais des paires de pdles

cﬁB-dS:O

équations de Maxwell sous forme intégrale ?

}

modele de Kirchhoff

- Potentiel magnétique (tension)
« Flux d’induction magnétique (courant)
« Permeéance (résistance!)



Potentiel magnétique scalaire (loi d’ampere)

©=Yi=¢H-dl [A] —— [@=Ni
j C

----------




Champ d'induction magnétique

B
Champ d’induction magnétique
B Permeéabilité du matériau
D Champ magnétique

l (indépendant du milieu)

— —

BO ®B v

i BZMH

A _ coude de saturation Permeabilité du vide

|

Permeéabilité relative

l

M=y 1,

matériaux ferromagnétiques (fer)

materiaux amagnetiques p=y, B .
(air, inox, plastique,...) n, =4mnl0

» H [A/m]



Potentiel magnétique scalaire (loi d’ampere)

©=Yi=¢H-dl [A] —— [@=Ni
j C

B=pH




Equations de Maxwell (quasi-statique)

forme intégrale (Stockes)
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S'il y a un courant il y a un champ magnétique

<_[>H-d1 — jJ-ds =", (loi d’Ampere)

S'il'y a une var/at/on du flux il y a une tension induite

CJ‘}E -dl = —j— dS (loi de Lenz-Faraday)

Pas de monopo/e magnétique mais des paires de pbles

<I>BodS:O

équations de Maxwell sous forme intégrale ?

}

modele de Kirchhoff
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Flux d'induction magnétique

flux totalisé

CD:_!BodS [Wb]ou[Vs] TN




Equations de Maxwell (quasi-statique)

forme intégrale (Stockes)

rotH=J

B
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—_—
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CJ‘}E -dl = —j— dS (loi de Lenz-Faraday)

Pas de monopo/e magnétique mais des paires de pbles
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équations de Maxwell sous forme intégrale ?
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modele de Kirchhoff

- Potentiel magnétique (tension)
« Flux d’induction magnétique (courant)
« Permeéance (résistance?)



Réluctance et perméance magnetique

En appliquant I'équation du potentiel magnétique a un tube de flux partiel.

B
dl
O, = [ ®,=R_O P=AO
A“’O Mrs
B
dl S
R = A=1/Rm A:MT

L A Mo 1, S L
Réluctance magnétique Perméance magnétique

Mise en parallele de perméances

P= +P,=AO+A,0=(A,+A,)0

Mise en série de perméances

Aeq paralléle = Z Ak
k

1 1
®=®1+®2=LCD+LCD= + O
A, A, A, A

1

eq série

1
A




Résume et exemple

®=Ni1 Modele de Kirchhoff
O=A0 - Potentiel magnétique (tension)
g « Flux d’induction magnétique (courant)
A=p= « Perméance (résistancet)
|
“‘ — “’O l"lr
D
i‘1 ( K 1, —’—-—CD =
Y, N, N, Y, [Y @i() C
\_ P 4




Exemple :
Modélisation d'un moteur pas a pas reluctant




Exercice

Que vaut le flux d'induction magnétique circulant dans
la bobine avec et sans entrefer ?
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P=A,0 ©O=Ni=100[A]
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| ® =Ni
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A:MT

M= 1,

u,=4n10"
1

eq série

1
c Ay

a=0.01m
b=0.1m
c=0.05m
I=1A
N=100
Hrer=1000 by

O =1mm




Exercice

Que vaut le flux d'induction magnétique circulant dans
la bobine avec et sans entrefer ?
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Lo, L1, 8
= + + + + +
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Exercice
Que vaut le flux d'induction magnétique circulant dans
la bobine avec et sans entrefer ? 1 1
®=A,0 ©=Ni=100[A] —=2 —
. Aeq k Ak

L, L 1, 8 L
= + + + + +
Mfer S Mfer S Mfer S Mfer S MO S Mfer S
(L+L+L+1,+L) 8
= : : : . : T \ 8 Mrfer _ Mrfer 8
err S MO S o
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l"lfer S VS
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A s =4.625-107 [H] @, =46.25-10"°[Wb]
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Exercice

Comparaison des valeurs du flux avec et sans entrefer.

_ 6
Dsymm =175-10 [Wb] ~4x moins ! En ajoutant 1mm d’air.
Dy =46.25-10° Wb
“’fer — IOOO HO
1 (L+L+L+1, Hp ]d+15)
]£ 8 Aeq série err S
Pour 1.=1000 quand on ajoute 1mm
' d’air c’est comme si |'on ajoute
r lmetre de fer dans le circuit
a 7 C magnétique (longueur équivalente).
b 1eqpourSZOmm — 36cm
1 =1.359m

eqpour d=Imm

~4x plus
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flux de flux de champ

Inductances fuited ,  principal®,
\PIZqu)l:leAllil L ne
Y = flux totalisé
D, = A, 6, A = perméance N, Y,
O, =N, 1, N = nombredespires
_[R. Y=Li
®=| B-dS o,
‘Pl flux mutel

inductance propre |L;,, =—| =L,, +L_,
1

L,, = N’A,, =inductance de champ principal

L_, = N’A_, =inductancede fuite

\Pz — Nz CD21 — N1N2A21 i1
CDZI — A21 ®1 —
. Y, Ay =Ay,
inductance mutelle |[L,, =—= =N, N, A,
1, L21 = L12 ,,




Facteur de couplage

Pour un systeme sans flux de fuite

L11 = Nl2 Ah
le — N1 Nz Ah
Lzz = N§ Ah
le = L11 Lzz

Facteur de couplage

Facteur de dispersion

en généralisant

> L, <
k = L <1
L, L,
2
c=1-k? =l—i

L, L

11
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Lll L22
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Champ d'induction magnétique

B
Champ d’induction magnétique
B Permeéabilité du matériau
D Champ magnétique

l (indépendant du milieu)

— —

BO ®B v

i BZMH

coude de saturation Perméabilité du vide

|

Permeéabilité relative

l

M=y 1,

matériaux ferromagnétiques (fer)

materiaux amagnetiques p=y, B .
(air, inox, plastique,...) n, =4mnl0

» H [A/m]
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Propriétés des matériaux ferromagnetiques

Caractéristique B-H

(I):@MOMrS

L@:gﬁH-dl:Ni
C

—»cp:jB-ds
S

2 non-linéarités :

« Hystérésis

« Saturation

26



Pertes par hystéresis

P, ~(f, B’)

D N B
7e |

iy

e
N

indeldiiop cermaitghte




Introduction des pertes fer

P

fer

=P

hystéresis

+P

courantsde Foucault

R

Tole Isolant




Influence de la saturation sur l'inductance

1B
B=uH
: H
>
2 > S
L=N'A=N MT
L~A~u

S'il y a saturation l'inductance diminue !

Inductance = facilité du flux a passer.
Le flux passe moins facilement, l'inductance diminue.

Quand on sature on Henry moins (C. Koechli).



Exemple

actéristique des toles
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Equations de Maxwell (quasi-statique)

forme intégrale (Stockes)

rotH=J

B
nnE——Q—

ot

divB=0

S'il y a un courant il y a un champ magnétique

<_[>H-d1 — jJ-ds =", (loi d’Ampere)

S'il'y a une var/at/on du flux il y a une tension induite
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Loi de |a tension induite (loi de Lenz-Faraday)

PE-dl =- 9B s
ot

flux totalisé

| . [F=N®
d(N @) l

Ri+ loi d'Ohm
dt généralisée

33



Tension induite généralisée

u:Ri+d—‘P
dt
. di di
u =R, 1 + L”ﬁ + leﬁ
. di di
u, =R, i +(Lhl +L‘”)d_t1+ led—tz

34



Tension induite généralisée

u=Ri+I Q(t)
dt |
SR+, 30 g

dt dt
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Tension induite généralisée

u=Ri+d—‘P
dt

di

Tension induite
de saturation

T

—

.OL di

u=Ri1+L— +k, Q +i——

dt

o J/ O\

o1 dt

A4

l

A4

l

Tension induite de
transformation

Tension induite

de mouvement

36
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Résumeé
Analogie entre circuits electriques et magnetiques

Potentiel magnétique (tension) ®=N1=HI
Flux d'induction magnéetique (courant) @ = BS
longueur
Flux totalisé Y=NO
, . ) S
Permeéance (résistancel) A=pn—
] +—
itz B .
Permeabilite n=po i, — p, =410
Loi d'Ohm O=A0
Mise en parallele de permeances Ay parattele = ZAk
k
. . , 1
Mise en série de perméances Aeqsérie =

‘ |



Résumé

Flux totalisé Y=NO=L1
. d¥Y . di
Loi d'Ohm généralisée u=Ri+—=R1+ L—+k, Q
dt dt
Inductance propre L,=NA,

Inductance de champ principal L, = le A,
Inductance de fuite L = le A,

Inductance mutuelle L, =N,NA,,
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